# NPDES PERMIT NO. NM0020532 STATEMENT OF BASIS # FOR THE DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT TO DISCHARGE TO WATERS OF THE UNITED STATES APPLICANT: Rio Algom Mining LLC Ambrosia Lake Facility P.O. Box 218 Grants, NM 87020 ISSUING OFFICE: U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733 PREPARED BY: J. Scott Wilson **Environmental Scientist** NPDES Permits Branch (6WQ-P) Water Quality Protection Division Telephone: 214-665-7511 FAX: 214-665-2191 E-mail: wilson.js@epa.gov PERMIT ACTION: Proposed reissuance of the current permit issued January 28, 2000 with an effective date of March 1, 2000 and an expiration date of February 29, 2005. DATE PREPARED: August 7, 2005 40 <u>CFR</u> CITATIONS: Unless otherwise stated, citations to 40<u>CFR</u> refer to promulgated regulations listed at Title 40, Code of Federal Regulations, revised as of 7/1/04. <u>CERTIFICATION</u>: The permit is in the process of certification by the New Mexico Environment Department in accordance with regulations found at 40 <u>CFR</u>124.53. Notice of the draft permit's availability will be sent to the District Engineer, Corps of Engineers; to the Regional Director of the U.S. Fish and Wildlife Service; and to the National Marine Fisheries Service. <u>FINAL DETERMINATION</u>: The public notice describes the procedures for the formulation of final determinations. ## I. PROPOSED CHANGES FROM PREVIOUS PERMIT It is proposed that the current permit be reissued for a 5-year term. The changes from the current permit issued are: (A) The limitations for Selenium and Vanadium were revised in accordance with New Mexico Water Quality Standards ## II. APPLICANT ACTIVITY Under the Standard Industrial Classification (SIC) Code(s) 1094, the applicant operates a Uranium mine which is in the process of reclamation. ## III. DISCHARGE LOCATION As described in the application, the plant site is located in McKinley County, New Mexico. The discharge(s) are to receiving water(s) named an unnamed ditch, thence to Arroyo del Puerto, thence to San Mateo Creek, thence to Rio San Jose, thence to Rio Puerco in Waterbody Segment Code No. 20.4.6.105 of the Rio Grande Basin. ## IV. RECEIVING WATER USES The designated uses of the receiving water(s) are: Irrigation Livestock Watering Wildlife Habitat Marginal Warm Water Aquatic Life Secondary Contact ## V. <u>STREAM STANDARDS</u> The general and specific stream standards are provided in "New Mexico State Standards for Interstate and Intrastate Surface Waters," (20.6.4 NMAC, effective October 11, 2002). ## VI. <u>DISCHARGE DESCRIPTION</u> A quantitative description of the discharge(s) described in the EPA Permit Application Forms 1 and 2C dated August 19, 2004 is presented in Appendix A of this Fact Sheet ## VII. <u>TENTATIVE DETERMINATION</u> On the basis of preliminary staff review and after consultation with the State of New Mexico, the Environmental Protection Agency has made a tentative determination to reissue a permit for the discharge described in the application. ## VIII. PROPOSED PERMIT CONDITIONS The specific effluent limitations and/or conditions are described below and will be found in the draft permit. ## IX DRAFT PERMIT RATIONALE The following section sets forth the principal facts and the significant factual, legal, methodological, and policy questions considered in preparing the draft permit. Also set forth are any calculations or other necessary explanations of the derivation of specific effluent limitations and conditions, including a citation to the applicable effluent limitation guideline or performance standard provisions as required under 40<u>CFR</u>122.44 and reasons why they are applicable or an explanation of how the alternate effluent limitations were developed. ## A. REASON FOR PERMIT REISSUANCE The current permit expired on February 29, 2005 and is presently administratively extended. The permit renewal application was dated August 19, 2004 and was received by EPA Region 6 on August 23, 2004. It is proposed that the current permit be reissued for a 5-year term following regulations promulgated at 40 CFR 122.46(a). That term will correspond with the EPA Basin Statewide Management Approach to Permitting in New Mexico, adopted March 2, 2000. This program also known as the Statewide Basin Management Approach to permitting is a comprehensive framework to better coordinate and integrate water resource management activities geographically by river basin. ## B. <u>TECHNOLOGY-BASED VERSUS WATER QUALITY</u> STANDARDS-BASED EFFLUENT LIMITATIONS AND CONDITIONS Following regulations promulgated at $40\underline{CFR}122.44(l)(2)(ii)$ , the draft permit limits are based on either technology-based effluent limits pursuant to $40\underline{CFR}122.44(a)$ or on State water quality standards and requirements pursuant to $40\underline{CFR}122.44(d)$ , whichever are more stringent. The technology based limitations for Total Suspended Solids, Chemical Oxygen Demand, Radium, Uranium, and Zinc are more stringent than required by State Water Quality Standard and are proposed to be retained in the reissued permit. The limits for Gross Alpha, Cadmium, Selenium, and Vanadium are based on more stringent State Water Quality Standards. ## C. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS ## 1. GENERAL COMMENTS Regulations promulgated at 40 <u>CFR</u> 122.44(a) require technology-based effluent limitations to be placed in NPDES permits based on effluent limitations guidelines where applicable, on BPJ (best professional judgment) in the absence of guidelines, or on a combination of the two. #### 2. EFFLUENT LIMITATIONS The draft permit establishes technology-based effluent limitations for Total Suspended Solids, Chemical Oxygen Demand, Radium, Uranium, and Zinc based on the Uranium, Radium, and Vanadium Subcategory of the Ore Mining and Dressing Point Source Category Effluent found at 40 CFR Part 440, Subpart C. Those limitations are included in the expired permit and are not proposed to be changed. The permittee treats contaminated ground water and mine reclamation water with ion exchange, followed by treatment with Barium Chloride. The previous permit required monitoring for Chemical Oxygen Demand, Radium, Uranium, and Zinc at an internal outfall located at the discharge from the treatment system. Those monitoring requirements are proposed to be retained in the reissued permit. #### 3. MONITORING FREQUENCIES FOR LIMITED PARAMETERS Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity $[40\underline{CFR}122.48(b)]$ and to assure compliance with permit limitations [40CFR122.44(i)(1)]. The draft permit establishes a monitoring frequency based on current permit requirements. Both the internal and final outfalls discharge on an intermittent basis. Monitoring is only required to be accomplished at times when there is a discharge. Monitoring for all parameters except flow at the final outfall is presently required to be once per week. Monitoring for flow is required to be done continuously when discharging. Monitoring at the internal outfall is require to be accomplished once per month. ## D. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS #### 1. GENERAL COMMENTS Effluent limitations and/or conditions established in the draft permit are in compliance with State water quality standards and the applicable water quality management plan. ## 2. POST THIRD ROUND POLICY AND STRATEGY Section 101 of the Clean Water Act (CWA) states that "...it is the national policy that the discharge of toxic pollutants in toxic amounts be prohibited..." To insure that the CWA's prohibitions on toxic discharges are met, EPA has issued a "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants (49 FR 9016-9019, 3/9/84)." In support of the national policy, Region 6 adopted the "Policy for Post Third Round NPDES Permitting" and the "Post Third Round NPDES Permit Implementation Strategy" on October 1, 1992. The Regional policy and strategy are designed to insure that no source will be allowed to discharge any wastewater which (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical State water quality standard resulting in nonconformance with the provisions of $40\underline{CFR}122.44(d)$ ; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation which threatens human health. #### 3. IMPLEMENTATION The Region is currently implementing its post third round policy in conformance with the Regional strategy. The NPDES permit contains technology-based effluent limitations reflecting the best controls available. Where these technology-based permit limits do not protect water quality or the designated uses, additional water quality-based effluent limitations and/or conditions are included in the NPDES permits. State narrative and numerical water quality standards are used in conjunction with EPA criteria and other available toxicity information to determine the adequacy of technology-based permit limits and the need for additional water quality-based controls. #### 4. STATE WATER QUALITY NUMERICAL STANDARDS #### a. GENERAL COMMENTS The discharge is made to an unnamed ditch which drains to an arroyo, neither of which support aquatic life or secondary contact recreation. However, as a part of State certification under section 401 of the Clean Water Act, NMED has required implementation of the recently adopted acute life designation in this permit. Therefore, numeric water quality criteria for livestock watering, wildlife habitat, irrigation, human health, and acute aquatic life were examined relative to this discharge. A spreadsheet, which was used to analyze the reasonable potential for the discharge to exceed water quality criteria, is shown below in Appendix A. ## b. PERMIT ACTION #### (1) WATER QUALITY-BASED LIMITS The comparison of effluent data with water quality criteria in Appendix A shows that the discharge has the potential to exceed State Water Quality Standards for Selenium, Vanadium, and Gross Alpha. New water quality-based limits for Vanadium are included in the proposed permit. The existing water quality-based limits for Gross Alpha and Cadmium are consistent with the criteria and is not proposed to be changed with this re-issuance. The existing water quality based limits for Selenium are more stringent than required under New Mexico's recently adopted water quality criteria. Therefore, the limits for Selenium are proposed to be increased in the reissued permit. #### (2) SCHEDULE OF COMPLIANCE Part I.B of the draft permit establishes a schedule of compliance and reporting requirements leading to the attainment no later than three (3) years from the effective date of the permit of state water quality standards-based effluent limitations established for Selenium at Outfall 001. The existing limit for Selenium will be effective until the end of the compliance schedule. #### c. MONITORING FREQUENCIES FOR LIMITED PARAMETERS Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity $[40\underline{\text{CFR}}122.48\,\text{(b)}]$ and to assure compliance with permit limitations $[40\underline{\text{CFR}}122.44\,\text{(i)}\,\text{(1)}]$ . The monitoring frequencies required by the expired permit are not proposed to be changed. All parameters limited at Outfall 001 are monitored at a minimum frequency of once per week, when discharging. #### 5. AQUATIC TOXICITY TESTING #### a. GENERAL COMMENTS The State has established narrative criteria which, in part, state that "Surface waters of the State shall be free of toxic substances attributable to discharges in amounts, concentrations or combinations which affect the propagation of fish or which are toxic to fish or other aquatic organisms; ..." (NM Standards 1105.F) The Implementation Guidance for NM Standards state that "Biomonitoring requirements will be applied to all major dischargers and those minor dischargers with known or potential problems to cause or contribute to exceedances of applicable [NM Standards] numeric or narrative water quality criteria in waters with existing or designated fishery uses" (Section VI. Narrative Toxics Implementation) "If it is determined that a facility is to receive chronic biomonitoring requirements at a critical dilution of 5% or less, then an acute-to-chronic ratio of 10:1 may be used to allow acute biomonitoring in lieu of chronic" (Section VI.C). #### b. PERMIT ACTION The receiving stream is designated for an aquatic life use; however, the discharge is made to a typically dry ditch which is approximately 17 miles upstream of Rio San Jose. Give that the discharge would need to travel a fair distance before reaching a perennial water, whole effluent toxicity testing does not appear to be an appropriate requirement for this discharge and is not proposed to be required. In addition, the permittee has previously conducted whole effluent toxicity testing. That previous monitoring demonstrated no toxic effects at 100% effluent. #### 6. IMPAIRED WATER- 303(d) LIST The receiving waters are not listed as impaired; therefore, no additional requirements are needed. #### X. ENDANGERED SPECIES EPA evaluated the potential to impact endangered species when the permit was last issued in 2000. At that time, it was determined that issuance of the permit would have no effect on any listed or proposed threatened or endangered species. There is no change in the baseline established by the previous permit; therefore, no further consultation is required at this time. #### XI. VARIANCE REQUESTS No variance requests have been received. ## XII. ADMINISTRATIVE RECORD The following section is a list of the fact sheet citations to applicable statutory or regulatory provisions and appropriate supporting references to the administrative record required by 40CFR124.9: #### A. PERMIT(S) NPDES Permit No. NM0020532 issued January 28, 2000 with an effective date of March 1, 2000 and an expiration date of February 29, 2005. ## B. APPLICATION(S) EPA Application Forms 1 and 2C dated August 19, 2004 #### C. CLEAN WATER ACT CITATIONS Section 101 Section 101(a)(3) Section 303 Section 304(e) Section 308 Section 401(a)(1) Section 401(a)(2) #### D. 40CFR CITATIONS #### STANDARD CITATIONS 122.44 122.44(a) 122.44(d) 122.44(d) (1) 122.44(i) (1) 122.44(i) (2) 122.44(i) (2) ``` 122.45(c)(3) ``` 122.46(a) 122.47 122.48 122.48(b) 124.5 124.53 131 amended at 57FR60848, 12/22/92 ## ADDITIONAL CITATIONS Fact Sheet for NM0020532, dated August 26, 1999 ## E. STATE WATER QUALITY REFERENCES ## STATE ADMINSTRATIVE CODE The general and specific stream standards are provided in "New Mexico State Standards for Interstate and Intrastate Surface Water," $(20\underline{NMAC}6.1, effective 10/11/2002)$ ## WATER QUALITY STANDARDS IMPLEMENTATION Region 6 Implementation Guidance for State of New Mexico Standards for Interstate and Intrastate Stream, 5/5/95. #### F. MISCELLANEOUS REFERENCES Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants [49FR9016-9019, 3/9/84] EPA Region 6 "Policy for Post Third Round NPDES Permitting" and "Post Third Round NPDES Permit Implementation Strategy," 10/1/92 Appendix A CALCULATIONS OF NEW MEXICO WATER QUALITY-BASED EFFLUENT LIMITATIONS NMAC 20.6.4. 2005 Calculations Specifications: Excel "Revised as June 23, 2005" Prepared By: Isaac Chen 3-Jun-05 #### STEP 1: REFERENCE IMPLEMENTATION PROCEDURES #### **IMPLEMENTATION PROCEDURES** **FACILTY** The State of New Mexico Standards for Interstate and Intrastate Surface Waters are implemented in this spread sheet by using procedures established in the "Implementation Guidance for State of New Mexico Standards for Interstate and Intrastatestreams", May 5, 1995. DATA INPUT | Permittee | | Rio Algom | |----------------------------------------------------------------------------------|-----|---------------| | NPDES Permit No. | | NM0020532 | | Outfall No.(s) | | 001 | | Plant Effluent Flow (MGD) | | 1 | | Plant Effluent Flow (cfs) | | 1.55 | | | | | | RECEIVING STREAM | | DATA INPUT | | Receiving Stream Name | | Unnamed Ditch | | Basin Name | | Rio Grande | | Waterbody Segment Code No. | | 20.6.4.109 | | Is a publicly owned lake or reservoir (enter ""1"" if it's a lake, ""0"" if not) | | 0 | | Are acute aquatic life criteria considered (1= yes, 0= no) | 1 | | | Are chronic aquatic life criteria considered (1= yes, 0=no) | | 0 | | Are domestic water supply criteria considered (1= yes, 0=no) | | 0 | | Are irrigation water supply criteria considered (1= yes, 0=no) | | 1 | | Livestock watering and wildlife habitat criteria applied to all streams | | | | Receiving Stream TSS (mg/l) | | 20 | | Receiving Stream Hardness (mg/l as CaCOs) RANGE: 0 - 400 | 200 | | | Receiving Stream Critical Low Flow (4Q3) (cfs) | | 0 | | Receiving Stream Harmonic Mean Flow (cfs) | | 0 | | Avg. Water Temperature (C) | | 16.2 | | pH (Avg) | | 7.7 | | Fraction of stream allowed for mixing (F) | | 1 | | Fraction of Critical Low Flow | | 0 | | | | | #### STEP 2: INPUT AMBIENT AND EFFLUENT DATA / CALCULATE IN-STREAM WASTE CONCENTRATIONS DATA INPUT Input pollutant geometric mean concentration as micro-gram per liter (ug/l or ppb) unless other unit is specified for the parameter. The following formula is used to calculate the Instream Waste Concentration (Cd) $$Cd = [(F*Qa*Ca) + (Qe*2.13*Ce)] / (F*Qa + Qe)$$ Where: <sup>&</sup>quot;Effluent value reported as ""< detection level"" (DL) but the DL is greater than MQL, the 1/2 DL is used." <sup>&</sup>quot;Effluent value reported as ""< detection level"" (DL) and the DL is smaller than MQL, ""0"" is used." <sup>&</sup>quot;If a firm value is reported, even less than MQL, the reported value is used." Dissolved Cd = Instream Waste Concentration F = Fraction of stream allowed for mixing (see NM Implementation Guidance) Ce = Reported concentration in effluent Ca = Ambient stream concentration upstream of discharge Qe = Plant effluent flow Qa = Critical low flow of stream at discharge point expressed as the 4Q3 or harmonic mean flow for human health criteria The following formula convert metals reported in total form to dissolved form if criteria are in dissolved form Kp = Kpo \* (TSS\*\*a) Kp = Linear partition coefficient; Kpo and a can be found in table below C/Ct = 1/ (1 + Kp\*TSS\* 1.0E-6) TSS = Total suspended solids concentration found in receiving stream (or in effluent for intermittent stream) Total Metal Criteria (Ct) = Cr / (C/Ct) C/Ct = Fraction of metal dissolved; and Cr = Dissolved criteria value | Stream | Linear | Partition | Coefficie | nt | |---------|--------|-----------|-----------|------| | Sureann | Linear | Paruuon | Coemicie | ill. | | Total Metals | Total Value | <u>Kpo</u> | | alpha (a) Kp | | C/Ct | Dissolved Value in Stream | |--------------|-------------|------------|-------|--------------|--------|-------------|---------------------------| | Arsenic | 50 | 480000 | -0.73 | 53887 | 66189 | 0.481289107 | 24.06445534 | | Chromium 10 | 3360000 | -0.93 | | 207196.0069 | 0.1944 | 104262 | 1.944042623 | | Copper | 10 | 1040000 | -0.74 | 11331 | 0.7574 | 0.306164767 | 3.061647671 | | Lead | 20 | 2800000 | -0.8 | 25487 | 8.9884 | 0.163999495 | 3.279989891 | | Nickel | 20 | 490000 | -0.57 | 88840 | 0885 | 0.360126535 | 7.202530701 | | Zinc | 15 | 1250000 | -0.7 | 15352 | 8.5033 | 0.245665836 | 3.684987547 | | The following formula is used to calculate hardness dependent criteria | | |------------------------------------------------------------------------|--| |------------------------------------------------------------------------|--| | Cadmium (D) | | Acute<br>Chronic | e(1.0166[ln(hardness)]-3.924)*CF<br>e(0.7409[ln(hardness)]-4.719)*CF | | WQC (ug/l)<br>3.948908896<br>0.397997761 | |--------------|-------|-----------------------|----------------------------------------------------------------------------|-----------|------------------------------------------| | Chromium (D) | | Acute<br>Chronic | 0.316 e(0.819[ln(hardness)]+3.7256<br>0.860 e(0.819[ln(hardness)]+0.6848) | | 1005.166881<br>130.7515599 | | Copper (D) | | Acute<br>Chronic | 0.960 e(0.9422[ln(hardness)]-1.700)<br>0.960 e(0.8545[ln(hardness)]-1.702) | | 25.82266587<br>16.19318047 | | Lead (D) | | Acute<br>Chronic | e(1.273[ln(hardness)]-1.46)*CF<br>e(1.273[ln(hardness)]-4.705)*CF | 5.3052483 | 136.1417491<br>512 | | Nickel (D) | Acute | 0.998 e(0.<br>Chronic | 846[ln(hardness)]+2.255)<br>0.997 e(0.846[ln(hardness)]+0.0584) | 841.6586 | 173<br>93.4822878 | | Zinc (D) | | Acute<br>Chronic | 0.978 e(0.8473[ln(hardness)]+0.884)<br>0.986 e(0.8473[ln(hardness)]+0.884) | | 210.822953<br>212.5474761 | | Silver (D) | | Acute | 0.85 e(1.72[ln(hardness)]-6.59) | | 10.59716954 | | | | | | | | Instr | | Livestock/ | Acute | Chronic | Human | | | | | |-------------------|---------|---------------|-----|-----------|-----------|---------|---------------|------------|--------------|----------|------------|----------|----------|----------|----------| | | | | | Ambient | Effluent | Acute | Domestic | Chronic | Human | Domestic | Irrigation | Wildlife | Fishery | Fishery | Health | | | | | | Conc. | Conc. | Fishery | Supply | Fishery | Health | Criteria | Criteria | Criteria | Criteria | Criteria | Criteria | | <b>POLLUTANTS</b> | CAS No. | <b>STORET</b> | MQL | Ca (ug/l) | Ce (ug/l) | 2.13*Ce | Cd,dom (ug/l) | Cd (ug/l) | Cd,hh (ug/l) | ug/l | ug/l | ug/l | ug/l | ug/l | ug/l | | Aluminum, dis | .7429-90-5 011 | 06 100 | 0 | 0 | 0 | 0 | 1E+100 | 5000 | 1E+100 | 750 | 87 | 1E+100 | | |------------------------|-----------------|------------|------|--------|--------|--------|--------|---------|--------|--------|--------|---------|------------| | Barium, dis. | 7440-39-3 010 | | 0 | 0 | 0 | 0 | 2000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | | Boron, dis. | 7440-42-8 010 | 022 100 | 100 | 213 | 213 | 213 | 213 | 1E+100 | 750 | 5000 | 1E+100 | 1E+100 | 1E+100 | | Cobalt, dis. | 7440-48-4 010 | 037 50 | 10 | 21.3 | 21.3 | 21.3 | 21.3 | 1E+100 | 50 | 1000 | 1E+100 | 1E+100 | 1E+100 | | "Molybdenum, dis. | 7439-98-7 010 | 062 10 | 270 | 575.1 | 575.1 | 575.1 | 575.1 | 1E+100 | 1000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Uranium, dis. | 7440-61-1 22 | 706 0.1 | 1730 | 3684.9 | 3684.9 | 3684.9 | 3684.9 | 5000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Vanadium, dis. | 7440-62-2 010 | 087 50 | 50 | 106.5 | 106.5 | 106.5 | 106.5 | 1E+100 | 100 | 100 | 1E+100 | 1E+100 | 1E+100 | | Ra-226 and Ra-228 ( | pCi/l) 11: | 503 | 3.1 | 6.603 | 6.603 | 6.603 | 6.603 | 5 | 1E+100 | 30 | 1E+100 | 1E+100 | 1E+100 | | Strontium (pCi/l) | 13: | 501 | 1000 | 2130 | 2130 | 2130 | 2130 | 8 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Tritium (pCi/l) | 04 | 124 | 1000 | 2130 | 2130 | 2130 | 2130 | 20000 | 1E+100 | 20000 | 1E+100 | 1E+100 | 1E+100 | | Gross Appha (pCi/l) | 800 | 029 | 1110 | 2364.3 | 2364.3 | 2364.3 | 2364.3 | 15 | 1E+100 | 15 | 1E+100 | 1E+100 | 1E+100 | | Asbestos (fibers/l) | | | 0 | 0 | 0 | 0 | 0 | 7000000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | T. Residual Chlorine | 7782-50-5 500 | 60 100 | 0 | 0 | 0 | 0 | 0 | 1E+100 | 1E+100 | 11 | 19 | 11 | 1E+100 | | Nitrate as N (mg/l) | 006 | 20 | 0 | 0 | 0 | 0 | 0 | 10 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Nitrite + Nitrate (mg/ | (1) 006 | 30 | 0 | 0 | 0 | 0 | 0 | 1E+100 | 1E+100 | 132 | 1E+100 | 1E+100 | 1E+100 | | Antimony, dis. | 7440-36-0 010 | 97 60 | 0 | 0 | 0 | 0 | 0 | 5.6 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 640 | | Arsenic, dis. | 7440-38-2 010 | 00 10 | 1 | 2.13 | 2.13 | 2.13 | 2.13 | 2.3 | 100 | 200 | 340 | 150 | 9 | | Beryllium, dis. | 7440-41-7 010 | 12 5 | 0 | 0 | 0 | 0 | 0 | 4 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Cadmium, dis. | 7440-43-9 010 | 25 1 | 0 | 0 | 0 | 0 | 0 | 5 | 10 | 50 | 3.95 | 0.398 | 1E+100 | | Chromium, dis. | 18540-29-9010 | 34 10 | 10 | 21.3 | 21.3 | 21.3 | 21.3 | 100 | 100 | 1000 | 1005.2 | 130.8 | 1E+100 | | Copper, dis. | 7440-50-8 010 | 42 10 | 0 | 0 | 0 | 0 | 0 | 1300 | 200 | 500 | 25.8 | 16.2 | 1E+100 | | Lead, dis. | 7439-92-1 010 | 49 5 | 20 | 42.6 | 42.6 | 42.6 | 42.6 | 50 | 5000 | 100 | 136.1 | 5.3 | 1E+100 | | Mercury, dis. | 7439-97-6 718 | 90 0.2 | 0 | 0 | 0 | 0 | 0 | 1E+100 | 1E+100 | 1E+100 | 1.4 | 0.77 | 1E+100 | | Mercury, total | 7439-97-6 719 | 00 0.2 | 0 | 0 | 0 | 0 | 0 | 2 | 1E+100 | 0.77 | 1E+100 | 1E+100 | 1E+100 | | Nickel, dis. | 7440-02-0 010 | 65 40 | 20 | 42.6 | 42.6 | 42.6 | 42.6 | 100 | 1E+100 | 1E+100 | 841.7 | 93.5 | 4600 | | Selenium, dis. | 7782-49-2 011 | 45 5 | 20 | 42.6 | 42.6 | 42.6 | 42.6 | 50 | 130 | 50 | 1E+100 | 1E+100 | 4200 | | Selenium, dis (SO4 > | >500 mg/l)" 011 | 45 5 | 282 | 600.66 | 600.66 | 600.66 | 600.66 | 50 | 250 | 50 | 1E+100 | 1E+100 | 4200 | | Selenium, total rec. | 7782-49-2 011 | 47 5 | 282 | 600.66 | 600.66 | 600.66 | 600.66 | 1E+100 | 1E+100 | 5 | 20 | 5 | 1E+100 | | Silver, dis. | 7440-22-4 010 | | 0 | 0 | 0 | 0 | 0 | 1E+100 | 1E+100 | 1E+100 | 10.6 | 1E+100 | 1E+100 | | Thalllium, dis. | 7440-28-0 010 | | 0 | 0 | 0 | 0 | 0 | 1.7 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 6.3 | | "Zinc, Dis." | 7440-66-6 010 | 80 20 | 15 | 31.95 | 31.95 | 31.95 | 31.95 | 7400 | 2000 | 25000 | 210.8 | 212.5 | 26000 | | Cyanide, di. | 57-12-5 007 | 20 10 | 0 | 0 | 0 | 0 | 0 | 200 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | | Cyanide, wk acid dis | 57-12-5 007 | | 0 | 0 | 0 | 0 | 0 | 700 | 1E+100 | 5.2 | 22 | 5.2 | 220000 | | 2,3,7,8-TCDD | 1764-01-6 346 | 75 0.00001 | 0 | 0 | 0 | 0 | 0 | | E+100 | 1E+100 | 1E+100 | 1E+1000 | .000000051 | | Acrolein | 107-02-8 342 | | 0 | 0 | 0 | 0 | 0 | 190 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 290 | | Acrylonitrile | 107-13-0 342 | | 0 | 0 | 0 | 0 | 0 | 0.51 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 2.5 | | Benzene | 71-43-2 340 | | 0 | 0 | 0 | 0 | 0 | 22 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 510 | | Bromoform | 75-25-2 321 | | 0 | 0 | 0 | 0 | 0 | 43 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1400 | | Carbon Tetrachloride | | | 0 | 0 | 0 | 0 | 0 | 2.3 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 16 | | Chlorobenzene | 108-90-7 343 | | 0 | 0 | 0 | 0 | 0 | 680 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 21000 | | Clorodibromomethan | | | 0 | 0 | 0 | 0 | 0 | 4 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 130 | | Chloroform | 67-66-3 321 | | 0 | 0 | 0 | 0 | 0 | 57 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 4700 | | Dichlorobromometha | | | 0 | 0 | 0 | 0 | 0 | 5.5 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 170 | | 1,2-Dichloroethane | | | 0 | 0 | 0 | 0 | 0 | 3.8 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 370 | | 1,1-Dichloroethylene | | | 0 | 0 | 0 | 0 | 0 | 0.57 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 32 | | 1,2-Dichloropropane | | | 0 | 0 | 0 | 0 | 0 | 5 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 150 | | 1,3-Dichloropropyler | | | 0 | 0 | 0 | 0 | 0 | 10 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1700 | | Ethylbenzene | 100-41-4 343 | | 0 | 0 | 0 | 0 | 0 | 3100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 29000 | | Methyl Bromide | 74-83-9 344 | 13 50 | 0 | 0 | 0 | 0 | 0 | 47 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1500 | | Methylene Chloride 75-09-2 34423 | 20 | 0 | 0 | 0 | 0 | 0 | 46 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5900 | |------------------------------------------------------------------------|----------|-----|---|---|---|-----|-----------|------------------|------------------|------------------|------------------|------------| | 1,1,2,2-Tetrachloroethane 79-34-5 34516 | 10 | 0 | 0 | 0 | 0 | 0 | 1.7 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 40 | | Tetrachloroethylene 127-18-4 34475 | 10 | 0 | 0 | 0 | 0 | 0 | 6.9 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 33 | | Tolune 108-88-3 34010 | 10 | 0 | 0 | 0 | 0 | 0 | 6800 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 200000 | | 1,2trans-Dichloroethylene156-60-5 34546 10 | | 0 0 | 0 | 0 | 0 | 700 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 140000 | 200000 | | 1,1,2-Trichloroethane 79-00-5 34511 | 10 | 0 | 0 | 0 | 0 | 0 | 5.9 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 160 | | Trichloroethylene 79-01-6 39180 | 10 | 0 | 0 | 0 | 0 | 0 | 25 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 300 | | Vinyl Chloride 75-01-4 39175 | 10 | 0 | 0 | 0 | 0 | 0 | 20 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5300 | | 2-Chlorophenol 95-57-8 34586 | 10 | 0 | 0 | 0 | 0 | 0 | 81 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 150 | | 2,4-Dichlorophenol 120-83-2 34601 | 10 | 0 | 0 | 0 | 0 | 0 | 77 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 290 | | 2,4-Dimethylphenol 105-67-9 34606 | 10 | 0 | 0 | 0 | 0 | 0 | 380 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 850 | | 4,6-Dinitro-o-Cresol 534-52-1 34657 | 50 | 0 | 0 | 0 | 0 | 0 | 13 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 280 | | 2,4-Dinitrophenol 51-28-5 34616 | 50 | 0 | 0 | 0 | 0 | 0 | 69 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5300 | | Pentachlorophenol 87-86-5 39032 | 50 | 0 | 0 | 0 | 0 | 0 | 2.7 | 1E+100 | 1E+100 | 19 | 15 | 30 | | Phenol 108-95-2 34694 | 10 | 0 | 0 | 0 | 0 | 0 | 21000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1700000 | | 2,4,6-Trichlorophenol 88-06-2 34621 | 10 | 0 | 0 | 0 | 0 | 0 | 14 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 24 | | Acenaphthene 83-32-9 34205 | 10 | 0 | 0 | 0 | 0 | 0 | 670 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 990 | | Anthracene 120-12-7 34220 | 10 | 0 | 0 | 0 | 0 | 0 | 8300 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 40000 | | Benzidine 92-87-5 39120 | 50 | 0 | 0 | 0 | 0 | 0 | 0.00086 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.002 | | Benzo(a)anthracene 56-55-3 34526 | 10 | 0 | 0 | 0 | 0 | 0 | 0.00080 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.002 | | Benzo(a)pyrene 50-32-8 34247 | 10 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.18 | | 3,4-Benzofluoranthene205-99-234230 | 10 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.18 | | Benzo(k)fluoranthene207-08-9 34242 | 10 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.18 | | Bis(2-chloroethyl)Ether111-44-4 34273 | 10 | 0 | 0 | 0 | 0 | 0 | 0.036 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5.3 | | • / | 10 | 0 | 0 | 0 | 0 | 0 | 1400 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 65000 | | Bis(2-ethylhexyl)Phthalate 117-81-7 39100 | 10 | 0 | 0 | 0 | 0 | 0 | 12 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 22 | | Butyl Benzyl Phthalate 85-68-7 34292 | 10 | 0 | 0 | 0 | 0 | 0 | 1500 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1900 | | 2-Chloronapthalene 91-58-7 34581 | 10 | 0 | 0 | 0 | 0 | 0 | 1000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1600 | | Chrysene 218-01-9 34320 | 10 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.18 | | Dibenzo(a,h)anthracene 53-70-3 34556 | 20 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.18 | | 1,2-Dichlorobenzene 95-50-1 34536 | 10 | 0 | 0 | 0 | 0 | 0 | 2700 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 17000 | | 1,3-Dichlorobenzene541-73-1 34566 | 10 | 0 | 0 | 0 | 0 | 0 | 320 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 960 | | 1,4-Dichlorobenzene106-46-7 34571 | 10 | 0 | 0 | 0 | 0 | 0 | 400 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 2600 | | 3,3'-Dichlorobenzidine 91-94-1 34631 | 50 | 0 | 0 | 0 | 0 | 0 | 0.21 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.28 | | Diethyl Phthalate 84-66-2 34336 | 10 | 0 | 0 | 0 | 0 | 0 | 17000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 44000 | | Dimethyl Phthalate 131-11-3 34341 | 10 | 0 | 0 | 0 | 0 | 0 | 270000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 1100000 | | Di-n-Butyl Phthalate 84-74-2 39110 | 10 | 0 | 0 | 0 | 0 | 0 | 2000 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 4500 | | 2,4-Dinitrotoluene 121-14-2 34611 | 10 | 0 | 0 | 0 | 0 | 0 | 1.1 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 34 | | 1,2-Diphenylhydrazine122-66-7 34346 | 20 | 0 | 0 | 0 | 0 | 0 | 0.36 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 2 | | Fluoranthene 206-44-0 34376 | 10 | 0 | 0 | 0 | 0 | 0 | 130 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 140 | | Fluorene 86-73-7 34381 | 10 | 0 | 0 | 0 | 0 | 0 | 1100 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5300 | | Hexachlorobenzene 118-74-1 39700 | 10 | 0 | 0 | 0 | 0 | 0 | 0.0028 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.0029 | | Hexachlorobutadiene 87-68-3 34391 | 10 | 0 | 0 | 0 | 0 | 0 | 4.4 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 180 | | Hexachlorocyclopentadiene 77-47-4 34386 | 10 | 0 | 0 | 0 | 0 | 0 | 240 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 17000 | | <b>7</b> 1 | | 0 | 0 | 0 | 0 | 0 | 14 | | | | | | | Hexachloroethane 67-72-1 34396<br>Indeno(1,2,3-cd)Pyrene193-39-5 34403 | 20<br>20 | 0 | 0 | 0 | 0 | 0 | 0.038 | 1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100 | 33<br>0.18 | | • • • • • • • • • • • • • • • • • • • • | 10 | 0 | 0 | 0 | 0 | 0 | 350 | 1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 9600 | | Isophorone 78-59-1 34408<br>Nitrobenzene 98-95-3 34447 | 10 | 0 | 0 | 0 | 0 | 0 | 350<br>17 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 690<br>690 | | | 50 | 0 | 0 | 0 | 0 | 0 | 0.0069 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 1E+100<br>1E+100 | 30 | | n-Nitrosodimethylamine 62-75-9 34438 | 50 | U | U | U | U | U | 0.0009 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 30 | | n-Nitrosodi-n-Propyla | mine621-64-7 3 | 4428 20 | 0 | 0 | 0 | 0 | 0 | 0.05 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 5.1 | |-----------------------|----------------|---------|---|-----|---|---|---|---------|--------|------------------|--------|--------|---------| | n-Nitrosodiphenylami | | | 0 | 0 | 0 | 0 | 0 | 33 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 60 | | Pyrene | 129-00-0 344 | | 0 | 0 | 0 | 0 | 0 | 830 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 4000 | | 1,2,4-Trichlorobenzer | | | 0 | 0 | 0 | 0 | 0 | 260 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 940 | | Aldrin | 309-00-2 393 | | 0 | 0 | 0 | 0 | 0 | 0.00049 | 1E+100 | 1E+100 | 3 | 1E+100 | 0.0005 | | Alpha-BHC | 319-84-6 393 | | 0 | 0 | 0 | 0 | 0 | 0.026 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.049 | | Beta-BHC | 319-85-7 393 | | 0 | 0 | 0 | 0 | 0 | 0.091 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 0.17 | | Gamma-BHC | 58-89-9 393 | | 0 | 0 | 0 | 0 | 0 | 0.19 | 1E+100 | 1E+100 | 0.95 | 1E+100 | 0.63 | | Chlordane | 57-74-9 393 | | 0 | 0 | 0 | 0 | 0 | 0.008 | 1E+100 | 1E+100 | 2.4 | 0.0043 | 0.0081 | | 4,4'-DDT and deriv. | 50-29-3 393 | | 0 | 0 | 0 | 0 | 0 | 0.0022 | 1E+100 | 0.001 | 1.1 | 0.001 | 0.0022 | | Dieldrin | 60-57-1 393 | | 0 | 0 | 0 | 0 | 0 | 0.00052 | 1E+100 | 1E+100 | 0.24 | 0.056 | 0.00054 | | Alpha-Endosulfan | 959-98-8 343 | | 0 | 0 | 0 | 0 | 0 | 62 | 1E+100 | 1E+100 | 0.24 | 0.056 | 89 | | | 33213-65-9 343 | | 0 | 0 | 0 | 0 | 0 | 62 | 1E+100 | 1E+100 | 0.22 | 0.056 | 89 | | Endosulfan sulfate | 1031-7-8 343 | | 0 | 0 | 0 | 0 | 0 | 62 | 1E+100 | 1E+100 | 1E+100 | 1E+100 | 89 | | Endrin | 72-20-8 393 | | 0 | 0 | 0 | 0 | 0 | 0.76 | 1E+100 | 1E+100<br>1E+100 | 0.086 | 0.036 | 0.81 | | Endrin Aldehyde | 7421-93-4 343 | | 0 | 0 | 0 | 0 | 0 | 0.70 | 1E+100 | 1E+100<br>1E+100 | 1E+100 | 1E+100 | 0.3 | | • | | | 0 | · · | - | 0 | | | | | | | | | Heptachlor | 76-44-8 394 | | 0 | 0 | 0 | 0 | 0 | 0.00079 | 1E+100 | 1E+100 | 0.52 | 0.0038 | 0.00079 | | Heptachlor Epoixde | 1024-57-3 394 | | 0 | 0 | 0 | 0 | 0 | 0.00039 | 1E+100 | 1E+100 | 0.52 | 0.0038 | 0.00039 | | PCBs | 1336-36-3 395 | 16 1 | 0 | 0 | 0 | 0 | 0 | 0.00064 | 1E+100 | 0.014 | 1E+100 | 0.014 | 0.00064 | | Toxaphene | 8001-35-2 394 | 00 5 | 0 | 0 | 0 | 0 | 0 | 0.0028 | 1E+100 | 1E+100 | 0.73 | 0.0002 | 0.0028 | Note: SCORET CODE for reference only. Codes for total form are used except for parameters which have criteria in both total and dissolved forms. ## STEP 3: SCAN POTENTIAL INSTREAM WASTE CONCENTRATIONS AGAINST WATER QUALITY CRITERIA AND ESTABLISH EFFLUENT LIMITATIONS FOR ALL APPLICABLE PARAMETERS No limits are established if the receiving stream is not designated for the particular uses. No limits are established if the potential instream waste concentrations are less than the chronic water quality criteria. The most applicable stringent criteria are used to establish effluent limitations for a given parameter. Water quality criteria apply at the end-of-pipe for acute aquatic life criteria and discharges to public lakes. "If background concentration exceeds the water quality criteria, water quality criteria apply. And ""Need TMDL"" shown to the next column of Avg. Mass" Monthly avg concentration = daily max. / 1.5. #### APPLICABLE WATER QUALITY-BASED LIMITS The following formular is used to calculate the allowable daily maximum effluent cincentration Daily Max. Conc. = Cs + (Cs - Ca)(F\*Qa/Qe)Monthly Avg. Conc. = Daily Max. Conc. / 1.5 Where: Cs = Applicable water quality standard Ca = Ambient stream concentration F = Fraction of stream allowed for mixing (1.0 is assigned to domestic water supply and human health uses) $Qe = Plant \ effluent \ flow$ Qa = Criteria Low flow (4Q3) or Harmonic Mean flow for Human Health Criteria | | | Domestic | Irrigation | Lvstock or | Acute | Chronic | Human | Daily | Monthly | Daily | Monthly | |------------|---------|---------------|------------|------------|--------|---------|--------|-------|---------|--------|---------| | | | | | Wildlife | Fish | Fish | Health | Max. | Avg. | Max. | Avg. | | POLLUTANTS | CAS No. | STORET Limits | Limits | Limits | Limits | Limits | Limits | ug/l | ug/l | Ib/day | lb/day | | Alum inum, dissolved | 7429-90-5 | 01106 | N/A |------------------------------|-----------------------------------------|-------|------------|-------|-------|------------|------------|------------|------------|-------|-------|------------| | Barium, dissolved | 7440-39-3 | 01005 | N/A | Boron, dissolved | 7440-42-8 | 01022 | N/A | Cobalt, dissolved | 7440-48-4 | 01037 | N/A | Molybdenum, dissolved | 7439-98-7 | 01062 | N/A | Uranium, dissolved | 7440-61-1 | 22706 | N/A | Vanadium, dissolved | 7440-62-2 | 01087 | N/A | 100 | 100 | N/A | N/A | N/A | 100 | 66.67 | 1.29 | 0.86 | | Ra-226 and Ra-228 (pCi/l) | | 11503 | N/A | Strontium (pCi/l) | | 13501 | N/A | Tritium (pCi/l) | | 04124 | N/A | Gross Appha (pCi/l) | | 80029 | N/A | N/A | 15 | N/A | N/A | N/A | 15 | 10 | N/A | N/A | | Asbestos (fibers/l) | | | N/A | Total Residual Chlorine | 7782-50-5 | 50060 | N/A | Nitrate as N (mg/l) | | 00620 | N/A | Nitrite + Nitrate (mg/l) | | 00630 | N/A | Antimony, dissolved (P) | 7440-36-0 | 01097 | N/A | Arsenic, dissolved (P) | 7440-38-2 | 01000 | N/A | Beryllium, dissolved | 7440-41-7 | 01012 | N/A | Cadmium, dissolved | 440-43-9 | 01025 | N/A | Chromium, dissolved | 18540-29-9 | | N/A | Copper, dissolved | 7440-50-8 | | N/A | Lead, dissolved | 7439-92-1 | 01049 | N/A | N/A | N/A | N/A | 5.3 | N/A | 32.3 | 21.6 | 0.42 | 0.28 | | Mercury, dissolved | 7439-97-6 | | N/A | Mercury, total | 7439-97-6 | 71900 | N/A | N/A | 1011 | N/A | Nickel, dissolved (P) | 7440-02-0 | | N/A | Selenium, dissolved (P) | 7782-49-2 | 01145 | N/A | Selenium, dis (SO4 >500 mg/l | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 01145 | N/A | 250 | 50 | N/A | N/A | N/A | 50 | 33.3 | 0.65 | 0.43 | | Selenium, total recoverable | 7782-49-2 | 01147 | N/A | N/A | 5 | 20 | 5 | N/A | 5 | 3.33 | 0.05 | 0.043 | | Silver, dissolved | 7440-22-4 | 01077 | N/A | Thalllium, dissolved (P) | 7440-28-0 | 01059 | N/A | Zinc, Dis. | 7440-66-6 | 01080 | N/A | Cyanide, dissolved | 57-12-5 | 00720 | N/A | Cyanide, weak acid dis. | 57-12-5 | 00718 | N/A | 2,3,7,8-TCDD | 1764-01-6 | 34675 | N/A | Acrolein | 107-02-8 | 34210 | N/A | Acrylonitrile | 107-13-0 | 34215 | N/A | Benzene | 71-43-2 | 34030 | N/A | Bromoform | 75-25-2 | 32104 | N/A | Carbon Tetrachloride | 56-23-5 | 32104 | N/A | Chlorobenzene | 108-90-7 | 34301 | N/A | Clorodibromomethane | 124-48-1 | 32105 | N/A | Chloroform | 67-66-3 | 32106 | N/A | Dichlorobromomethane | 75-27-4 | 32100 | N/A | 1,2-Dichloroethane | 07-06-2 | 34531 | N/A | 1,1-Dichloroethylene | 75-35-4 | 34501 | N/A | 1,2-Dichloropropane | 73-33-4<br>78-87-5 | 34541 | N/A<br>N/A | N/A | N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A | N/A | N/A<br>N/A | | 1,3-Dichloropropylene | 542-75-6 | 34561 | N/A<br>N/A | N/A | N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A | N/A | N/A<br>N/A | | Ethylbenzene | 100-41-4 | 34301 | N/A<br>N/A | N/A | N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A | N/A | N/A | N/A<br>N/A | | Methyl Bromide | 74-83-9 | 34413 | N/A<br>N/A | N/A | N/A | N/A<br>N/A | N/A | N/A<br>N/A | N/A<br>N/A | N/A | N/A | N/A<br>N/A | | Metryi Biolinde | 14-03-9 | 34413 | 1 1/ /1 | 11/71 | 11/71 | 14/71 | 14/71 | 11/71 | 18/73 | 13/73 | 11/11 | 1 1/ /1 | | Methylene Chloride | 75-09-2 | 34423 | N/A |------------------------------|----------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 1,1,2,2-Tetrachloroethane | 79-34-5 | 34516 | N/A | Tetrachloroethylene | 127-18-4 | 34475 | N/A | Tolune | 108-88-3 | 34010 | N/A | 1,2trans-Dichloroethylene | 156-60-5 | 34546 | N/A | 1,1,2-Trichloroethane | 79-00-5 | 34511 | N/A | Trichloroethylene | 79-01-6 | 39180 | N/A | Vinyl Chloride | 75-01-4 | 39175 | N/A | 2-Chlorophenol | 95-57-8 | 34586 | N/A | 2,4-Dichlorophenol | 120-83-2 | 34601 | N/A | 2,4-Dimethylphenol | 105-67-9 | 34606 | N/A | 4,6-Dinitro-o-Cresol | 534-52-1 | 34657 | N/A | 2,4-Dinitrophenol" | 51-28-5 | 34616 | N/A | Pentachlorophenol | 87-86-5 | 39032 | N/A | Phenol | 108-95-2 | 34694 | N/A | 2,4,6-Trichlorophenol | 88-06-2 | 34621 | N/A | Acenaphthene | 83-32-9 | 34205 | N/A | Anthracene | 120-12-7 | 34220 | N/A | Benzidine | 92-87-5 | 39120 | N/A | Benzo(a)anthracene | 56-55-3 | 34526 | N/A | Benzo(a)pyrene | 50-32-8 | 34247 | N/A | 3,4-Benzofluoranthene | 205-99-2 | 34230 | N/A | Benzo(k)fluoranthene | 207-08-9 | 34242 | N/A | Bis(2-chloroethyl)Ether | 111-44-4 | 34273 | N/A | Bis(2-chloroisopropyl)Ether | 108-60-1 | 34283 | N/A | Bis(2-ethylhexyl)Phthalate | 117-81-7 | 39100 | N/A | Butyl Benzyl Phthalate | 85-68-7 | 34292 | N/A | 2-Chloronapthalene | 91-58-7 | 34581 | N/A | Chrysene | 218-01-9 | 34320 | N/A | Dibenzo(a,h)anthracene | 53-70-3 | 34556 | N/A | 1,2-Dichlorobenzene | 95-50-1 | 34536 | N/A | 1,3-Dichlorobenzene | 541-73-1 | 34566 | N/A | 1,4-Dichlorobenzene | 106-46-7 | 34571 | N/A | 3,3'-Dichlorobenzidine | 91-94-1 | 34631 | N/A | Diethyl Phthalate | 84-66-2 | 34336 | N/A | Dimethyl Phthalate | 131-11-3 | 34341 | N/A | Di-n-Butyl Phthalate | 84-74-2 | 39110 | N/A | 2,4-Dinitrotoluene | 121-14-2 | 34611 | N/A | 1,2-Diphenylhydrazine | 122-66-7 | 34346 | N/A | Fluoranthene | 206-44-0 | 34376 | N/A | Fluorene | 86-73-7 | 34381 | N/A | Hexachlorobenzene | 118-74-1 | 39700 | N/A | Hexachlorobutadiene | 87-68-3 | 34391 | N/A | Hexachlorocyclopentadiene | 77-47-4 | 34386 | N/A | Hexachloroethane | 67-72-1 | 34396 | N/A | Indeno(1,2,3-cd)Pyrene | 193-39-5 | 34403 | N/A | Isophorone | 78-59-1 | 34408 | N/A | Nitrobenzene | 98-95-3 | 34447 | N/A | n-Nitrosodimethylamine | 62-75-9 | 34438 | N/A | ii i vidosodinicui yianinile | 04-13-3 | J <del>-1</del> -JU | 11/11 | 11/11 | 11/11 | 11/11 | 11/11 | 11/11 | 11/11 | 14/71 | 11/11 | 14/13 | | n-Nitrosodi-n-Propylamine | 621-64-7 | 34428 | N/A |---------------------------|------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | n-Nitrosodiphenylamine | 86-30-6 | 34433 | N/A | Pyrene | 129-00-0 | 34469 | N/A | 1,2,4-Trichlorobenzene | 120-82-1 | 34551 | N/A | Aldrin | 309-00-2 | 39330 | N/A | Alpha-BHC | 319-84-6 | 39337 | N/A | Beta-BHC | 319-85-7 | 39338 | N/A | Gamma-BHC | 58-89-9 | 39340 | N/A | Chlordane | 57-74-9 | 39350 | N/A | 4,4'-DDT and derivatives | 50-29-3 | 39300 | N/A | Dieldrin | 60-57-1 | 39380 | N/A | Alpha-Endosulfan | 959-98-8 | 34361 | N/A | Beta-Endosulfan | 33213-65-9 | 34356 | N/A | Endosulfan sulfate | 1031-7-8 | 34351 | N/A | Endrin | 72-20-8 | 39390 | N/A | Endrin Aldehyde | 7421-93-4 | 34366 | N/A | Heptachlor | 76-44-8 | 39410 | N/A | Heptachlor Epoixde | 1024-57-3 | 39420 | N/A | PCBs | 1336-36-3 | 39516 | N/A | Toxaphene | 8001-35-2 | 39400 | N/A